A Performance Comparison of CUDA and OpenCL

Kamran Karimi Neil G. Dickson Firas Hamze

D-Wave Systems Inc.
100-4401 Still Creek Drive
Burnaby, British Columbia
Canada, V5C 6G9
{kkarimi, ndickson, fhamze}@dwavesys.com

Abstract

CUDA and OpenCL offer two different interfaces faogramming GPUs. OpenCL is an
open standard that can be used to program CPUss G other devices from different
vendors, while CUDA is specific to NVIDIA GPUs. Albugh OpenCL promises a
portable language for GPU programming, its gengratay entail a performance
penalty. In this paper, we compare the performanicéeCUDA and OpenCL using
complex, near-identical kernels. We show that whsing NVIDIA compiler tools,
converting a CUDA kernel to an OpenCL kernel ineadvminimal modifications.
Making such a kernel compile with ATI’s build todlsvolves more modifications. Our
performance tests measure and compare data tramsés to and from the GPU, kernel
execution times, and end-to-end application exenutimes for both CUDA and
OpenCL.

1. Introduction

Graphics Processing Units (GPUs) have become impioirt providing processing power
for high performance computing applications. CUODAd&nd Open Computing Language
(OpenCL) [11] are two interfaces for GPU computibgth presenting similar features
but through different programming interfaces. CUBAa proprietary API and set of
language extensions that works only on NVIDIA's GPWpenCL, by the Khronos
Group, is an open standard for parallel programmismg Central Processing Units
(CPUs), GPUs, Digital Signal Processors (DSPs),ather types of processors.

CUDA can be used in two different ways, (1) via thatime API, which provides a C-
like set of routines and extensions, and (2), weadriver API, which provides lower level
control over the hardware but requires more codkepragramming effort. Both OpenCL
and CUDA call a piece of code that runs on the GRdgrnel. There are differences in
what each language accepts as a legal kernel,ricase making it necessary to change
the kernel sources, as explained in section 2.

Setting up the GPU for kernel execution differs dtahtially between CUDA and
OpenCL. Their APIs for context creation and datpyoog are different, and different
conventions are followed for mapping the kernelootite GPU’s processing elements.
These differences could affect the length of tineeded to code and debug a GPU
application, but here we mainly focus on runtimegqenance differences.

OpenCL promises a portable language for GPU progriagy capable of targeting very
dissimilar parallel processing devices. Unlike ali?Ukernel, an OpenCL kernel can be
compiled at runtime, which would add to an OpenQiisning time. On the other hand,
this just-in-time compile may allow the compiler denerate code that makes better use
of the target GPU. CUDA, on the other hand, is tped by the same company that
develops the hardware on which it executes, sonoag expect it to better match the
computing characteristics of the GPU, offering maeress to features and better
performance. Considering these factors, it is ofergst to compare OpenCL’s
performance to that of CUDA in a real-world apptios.

In this paper we use a computationally-intensiveergific application to provide a
performance comparison of CUDA and OpenCL on an DNXI GPU. To better
understand the performance implications of usinthed these programming interfaces,
we measure data transfer times to and from the GBtdel execution times, and end-to-
end application running times. Since in our cage@penCL and CUDA kernels are very
similar, and the rest of the application is idesti@ny difference in performance can be
attributed to the efficiency of the correspondimggramming framework.

Not much formal work has been done on systematigpasison of CUDA and OpenCL.
An exception is [6], where CUDA and OpenCL are foto have similar performance. A
benchmark suite that contains both CUDA and Opepfdigrams is explained in [2]. A
performance study for ATI GPUs, comparing the penfince of OpenCL with ATI's
Stream computing system [10] is outside the scdplei®paper.

The rest of the paper is organized as follows. i8e@ presents our test application, as
well as the OpenCL and CUDA kernels. Section 3 &rgl the performance tests we
performed and analyzes the results. Section 4 adaslthe paper.

2. The application

The application used in this paper, called Adiab&Uantum Algorthms (AQUA) [12],
is a Monte Carlo simulation [1] of a quantum spiystem written in C++. We
approximate the quantum spin configuration withlassical Ising spin system [4]. The
classical approximation consists of ferromagnéjie@upled copies of the quantum
system. Each copy is coupled to exactly two otlogies, forming a ring of the copies.
This approximation process is called the Suzukit€rodecomposition [3]. Here we call
the result dayered system. In this paper we simulate quantum systems rangirgize
from 8 qubits (quantum bits) to 128 qubits, whilee tnumber of layers used to
approximate the quantum system with a classicalisreet to be 128 for all problem

sizes. The number of variables in this layeredesysis the number of qubits in each
layer, multiplied by the number of layers.

We simulate each layered system at different podusng an adiabatic quantum

evolution [9]. At each point, a complete layeredteyn is simulated, so the total number
of variables processed by the application is theber of variables in each layered
system, multiplied by the number of points useditoulate the adiabatic evolution, as in
Table 1.

Qubits | Layers | Smulation | Classical Spin
Points Variables

8 128 27 27,648
16 128 34 69,632
32 128 37 151,552
48 128 57 350,208
72 128 71 654,336
96 128 111 1,363,968
128 128 129 2,113,536

Table 1. Quantum system sizes and their correspgraliassical sizes

The mapping of data structures to GPU and CPU disreaAQUA is presented in detail
in [5], where a CUDA implementation of the algoniths explained. For this paper we
optimized the kernel's memory access patterns. Néa fported the CUDA kernel to
OpenCL, a process which, with NVIDIA developmenbls) required minimal code
changes in the kernel itself, as explained belothieOrelated code, for example to detect
and setup the GPU or to copy data to and from tR&) Geeded to be re-written for
OpenCL.

We assign each multi-processor in the GPU to sveelgyered system. For an 8-qubit
system, for example, 27 layered systems are taveptsbecause we have 27 simulation
points. We thus have 27 work groups (in OpenCL lagg) or thread blocks (in CUDA
language).

Table 2 shows the changes we had to make to theACk#ébnel code in order for it to
compile and run under OpenCL with NVIDIA tools. Mahat the last change listed is
because OpenCL prevents the use of the address afray element to index into the
array.

Change CUDA kernel NVIDIA OpenCL kerne
Type qualifiers Use shared |, etc. Use latel,
GPU thread indexing | Use threadldx, etc. Use gedl lad(), etc.
Thread synchronizing| Use syncthreads() Use lb@rrie
Array referencing float *a2 = &al[index1]; | index = index1 + index2
// then use: a2[index2]; // then use: alfindex]

Table 2. Changes necessary to make a CUDA kerngbit® under NVIDIA's OpenCL

No other changes were necessary to make the corkputel compile and run under
OpenCL. The Mersenne-Twister [8] random number gengs kernel, called by the

compute kernel as explained in [5], required simdhanges to compile and run under
OpenCL.

We also tried porting the code to ATI GPUs by usiig’'s OpenCL development tools.
Doing so involved many more changes to the keinedddition to the ones mentioned in
Table 2), primarily due to the lack of global véilia declarations in ATI's OpenCL, as
mentioned in Table 3 below.

Change CUDA kernél ATI OpenCL kerne
Memory allocation __global float mt[SIZE]| __kernel k(__global float *mt)
// use mt in kernel k() // pass mt as an argument
Intrinsic functions __int_as float() as_float()

Table 3. Changes necessary to make a CUDA kerngpitmunder ATI's OpenCL

With ATI's OpenCL development tools one cannot edlie memory statically. The
memory must be allocated prior to calling the keamel a pointer must be used to access
it. Figure 1 shows the code to initialize Mersefivaster’s data structures for NVIDIA’s
OpenCL tools.

__global unsignednt mt{MAX_RAND_CHAINS][NN][MAX_RAND_THREADS];
__global int mtifMAX_RAND_CHAINS][MAX_RAND_THREADS];

__kernelvoid ocl_init_randint seed) {
mt[chain][O][thread]= seed + chain * MAX_RAND_TREADS * NN + thread,;
for (mti[chain][thread]=1; mti[chain][thread]<NN; mthain][thread]++) {
mt[chain][mti[chain][thread]][thread] =

(1812433253UL * (mt[chain][mti[chainfitead]-1][thread] *
(mt[chain][mti[chain][thread]-1][thre&&> 30)) + mti[chain][thread]);

Figure 1. Mersenne-Twister initialization code MVIDIA’'s OpenCL compiler

Figure 2 shows the code of Figure 1, changed tegminters to dynamically allocated
memory. Passing the arrays as in mt[J[NN][MAX_ANDHREADS] works under
NVIDIA'’s tools but not under ATI’s tools. As a rdsuhe index calculation operations of
Figure 2 are needed to map the one-dimensionataaédd arrays to three-dimensional
arrays required by Mersenne-Twister. The code guie 2 compiles and runs under both
NVIDIA and ATI tools.

__kernelvoid ocl_init_randint seed, __globalnsignednt *mt, __globalint *mti) {
int chain = get_global_id(0)int thread = get_global_id(1);
intbase = chain * MAX_RAND_THREADS * NN + thread,;

mt[base] = seed + base;

int index = chain * MAX_RAND_THREADS + thread,;
for (mti[index]=1; mti[index]<NN; mti[index]++) {

int index2 = base + mti[index] * MAX_RAND_THREADS;

int index3 = base + (mti[index] - 1) * MAX_RAND_THREA®)

mt[index2] = (1812433253UL * (mt[index3] ~ {fimdex3] >> 30)) + mti[index]);
}

}

Figure 2. Mersenne-Twister initialization code AFI's OpenCL compiler

To reduce the effects of coding patterns on perémee tests, for the rest of the paper we
use very similar CUDA and OpenCL kernels compilethwNVIDIA’s development
tools, as in Figure 1. The kernels contain a mixndéger, floating point, and logical
operations, acting on different data structuress Thmplexity sets them apart from some
other GPU applications, where the kernel is usedifapler operations such as adding or
multiplying matrix elements.

3. Perfor mancetests

We tested CUDA and OpenCL versions of our applcatn an NVIDIA GeForce GTX-
260. Both CUDA and OpenCL were at version 2.3. 3h [ve were concerned with
maintaining the responsiveness of the computer, pangosefully reduced the GPU’s
load to make sure the computer remains usable whel@pplication is running. For the
experiments in this paper, we aim for maximum @@nfince, so we reduced the CPU
code execution, as well as data copy portions e@frtim to a minimum and increased the
GPU’s load to the maximum. As a result, the compaiteser interface was very sluggish
during these tests. No interaction with the compwias attempted during the actual data-
gathering runs to make sure the GPU’s computinggpow@mained dedicated to the
AQUA application.

The application goes through the following stepsirduits run: (1) Setup the GPU
(includes GPU detection, compiling the kernel fgre@CL, etc.) (2) Read the input, (3)
copy data to the GPU, (4) Run the kernel on the GBWcopy data back to the host, (6)
process the returned data using the CPU and otltpuiesults.

Table 4 reports the total amount of time neededofy data to and from the GPU and
run the kernel (the sum of the time needed to perfsteps 3, 4, and 5) as the GPU
Operations Time. Both kernels performed 20,000 pwex the variables in each layered
system. The End-To-End time in Table 4 shows theumnof time needed to run the

whole application from the beginning to end, cqoesling to time spent for steps 1
through 6. We solved each problem 10 times witthb@tUDA and OpenCL to get
repeatable average times.

Qubits GPU Operations Time End-To-End Running Time
CUDA OpenCL CUDA OpenCL
value | stdev value stdev value stdev value stdev

8 1.97| 0.030 2.24| 0.006 2.94| 0.007 4.28| 0.164

16 3.87| 0.006 4.75| 0.012 5.39| 0.008 7.45| 0.023

32 7.71| 0.007 9.05| 0.012 10.16| 0.009 12.84| 0.006

48| 13.75| 0.015 19.89| 0.010 17.75| 0.013 26.69| 0.016

72| 26.04| 0.034 42.32| 0.085 32.77| 0.025 54.85| 0.103

96| 61.32| 0.065 72.29| 0.062 76.24| 0.033 92.97| 0.064

128 | 101.07| 0.523| 113.95| 0.758| 123.54| 1.091| 142.92] 1.080

Table 4.GPU and application running times in sesond

To better understand the efficiency of CUDA and @k in data transfer and kernel
operations, Table 5 breaks down the GPU Operafiome into the Kernel Running
Time (step 4), and the Data Transfer Time to aaohfthe graphics device (steps 3 and 5;
performed once for each problem).

Qubits Kerne Running Time Data Transfer Time
CUDA OpenCL CUDA OpenCL
value | stdev | value | stdev | value | stdev value stdev

8 1.96| 0.027| 2.23| 0.004 0.009| 0.007 0.011 0.007

16 3.85| 0.006] 4.73| 0.013 0.015| 0.001 0.023 0.008

32 7.65| 0.007] 9.01| 0.012 0.025| 0.010 0.039 0.010

48 13.68| 0.015] 19.80| 0.007 0.061| 0.010 0.086 0.008

72 25.94| 0.036| 42.17| 0.085 0.106| 0.006 0.146 0.010

96 61.10/ 0.065| 71.99| 0.055 0.215| 0.009 0.294 0.011

128| 100.76| 0.527| 113.54| 0.761 0.306| 0.010 0.417 0.007

Table 5. Kernel execution and GPU data transfeegim seconds.

Table 6 shows the amount of data transferred betwee GPU and the host. The same
amount of data is copied from the host to the G&tejp(3), and from the GPU back to the
host (step 5), so each of the steps 3 and 5 transédf of the amount shown in Table 6.

Qubits | Data Transferred

8 649.05

16 1,633.32

32 3,553.44

48 8,210.22

72 15,338.77]

96 33,124.49

128 49,541.04

Table 6. Amount of data transferred between the @RdUthe host in KB.

To compare the data transfer times of CUDA and Qperrigure 3 shows the transfer
time for OpenCL divided by the transfer time for DR for each problem size. As can
be seen, OpenCL’s data transfer overhead doeshaotge significantly for different
problem sizes.

1.8 4 & Transfer Time Ratio
1.6 °
*
1.4 *
. . *
1.2
*

<
5
o
-
O
g 08
Q.
(@]

0.6

0.4

0.2 4

0 T T)
10,000 100,000 1,000,000 10,000,000
Number of Variables

Figure 3. OpenCL/CUDA data transfer time ratio

Figure 4 displays the number of variables procepsedsecond by the two kernels, as a
function of the number of variables in the probléRrocessed Variables / Kernel
Running Time).

30000 - o CUDA
= OpenCL

25000 | ¢ .

20000 - .

15000 - - =

10000 -

Variables per Second (x 20,000)

5000 -

0 T T 1
10,000 100,000 1,000,000 10,000,000

Number of Variables

Figure 4. Processing speed for different probleraessi

From Figure 4 one can see that for each problem, st CUDA version of the
application processes more variables per secomagstiie OpenCL version.

Figure 5 shows the relative time difference (i.©pénCL’'s time — CUDA’s
time)/(CUDA's time)) for different problem sizedata obtained from both the kernel
execution time and the end-to-end running timeshosvn.

80.00% - ¢ Kernel Time

® End-to-End Time
70.00% |
[]
*

60.00% -
3
2 50.00% | "
o
ke - ¢
8 40.00% | .
2
& 30.00% -
[hd []

*
20.00% -| "
* *
| |
¢ IS
10.00% |
0.00% : : ‘
10,000 100,000 1,000,000 10,000,000

Number of Variables

Figure 5. Relative difference in running time betw&UDA and OpenCL

For all problem sizes, both the kernel and the terelhd times show considerable
difference in favor of CUDA. The OpenCL kernel'srfeemance is between about 13%
and 63% slower, and the end-to-end time is betvadmut 16% and 67% slower. As
expected, the kernel and end-to-end running tinmgsaach each other in value with
bigger problem sizes, because the kernel time’dribotion to the total running time
increases.

4. Concluding remarks

In this paper we used a specific real-world applicato compare the performance of
CUDA with NVIDIA’s implementation of OpenCL. Bothrpgramming interfaces have
similar functionality and porting the kernel coderh one to the other needs minimal
changes when using NVIDIA’s development tools. idgrthe rest of the GPU-related
code, including GPU setup and data transfer cog@)ves writing new code.

In our tests, CUDA performed better when transfgyriata to and from the GPU. We
did not see any considerable change in OpenCL&ivel data transfer performance as
more data were transferred. CUDA'’s kernel executi@s also consistently faster than
OpenCL’s, despite the two implementations runniegrty identical code.

CUDA seems to be a better choice for applicationtsere achieving as high a
performance as possible is important. Otherwisechiwece between CUDA and OpenCL
can be made by considering factors such as primiligaity with either system, or
available development tools for the target GPU Wward.

Acknowledgements
We would like to thank Geordie Rose for supportimg project. We are also grateful to
Corinna Klausing, David Lawson, and Tommy Sundgdardheir help.

References

[1] Berg, B.A.,Markov Chain Monte Carlo Smulations and Their Satistical Analysis,
World Scientific Publishing, 2004.

[2] Danalis, A., et al, The Scalable Heterogengdamputing (SHOC) Benchmark Suite,
The Third Workshop on General-Purpose Computation on Graphics Processing Units,
2010.

[3] Das, A. and Chakrabarti, B.KQuantum Annealing and Related Optimization
Methods, Springer-Verlag, 2005.

[4] Fischer, K.H. and Hertz, J.ASpin Glasses, Cambridge: Cambridge University Press,
1993.

[5] Karimi, K., Dickson, N.G., and Hamze, F., Hiterformance Physics Simulations
Using Multi Core CPUs and GPGPUs in a Volunteer @atimg Context]nternational
Journal of High-Performance Applications, accepted

[6] Khanna G., and McKennon, J., Numerical ModelofgGravitational Wave Sources
Accelerated by OpenClhttp://arxiv.org/PS _cache/arxiv/pdf/1001/1001.3631v1.pdf

[7] Kirk, D. and Hwu, W.,Programming Massively Parallel Processors: A Hands-on
Approach, Morgan Kaufmann Publishers, 2010.

[8] Matsumoto, M. and Nishimura, T., Mersenne TeistA 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number GedpnerséACM Transactions on
Modeling and Computer Smulation, Vol. 8, No. 1, 1998.

[9] Metodi, T.S., Chong, F.T.Quantum Computing for Computer Architects, Morgan
and Claypool Publishers, 2006.

[10] Miller, F.P., Vandome, A.F., McBrewster, J.d§, AMD FireStream: ATI
Technologies, Stream processing, Nvidia Tesla, Advanced Micro Devices, GPGPU,
High-performance computing, Torrenza, Radeon R520, Shader, Alphascript Publishing,
2009.

[11] Tsuchiyama, R., Nakamura, T., lizuka, T., aAdahara, A., The OpenCL
Programming Book, Fixstars Corporation, 2010.

[12] http://aqua.dwavesys.com

